Using Compund Codes for Automatic Classification of Clinical Diagnoses
نویسندگان
چکیده
Classification of diagnoses (a.k.a. coding) is the central part of current concept based medical IR systems. Some classification systems contain over 30,000 distinct codes which makes classifying clinical documents a time consuming labor intensive and error prone process. This paper presents a simple methodology for cleaning up and reusing existing manually coded diagnostic statements mainly extracted from clinical notes to build predictive models using a sparse-feature implementation of a Naïve Bayes classifier. One of the problems addressed is that diagnostic statements often contain several diagnoses and are assigned several codes resulting in a multi-class classification problem. We investigate one possible way of addressing this problem by introducing compound (multiple code) categories. We present experimental results of classifying >16,000 randomly selected diagnostic strings into 19 top level categories. A small improvement (3%) with using compound categories over simple categories indicates that using multiple code categories is a promising solution, although clearly in need of further research and refinement.
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملAutomatic Matching of ICD-10 codes to Diagnoses in Discharge Letters
This paper presents an approach for automatic mapping of International Classification of Diseases 10th revision (ICD-10) codes to diagnoses extracted from discharge letters. The proposed algorithm is designed for processing free text documents in Bulgarian language. Diseases are often described in the medical patient records as free text using terminology, phrases and paraphrases which differ s...
متن کاملCompliance and frequency of nursing diagnoses registered in pediatric oncology wards with Nanda nursing diagnosis
Background & Aim: Proper recording of the nursing report indicates the nurse’s optimal clinical performance and compliance with the standards. Nanda Nursing Diagnosis is one of the most important and widely used international standard terms for recording nursing care. The aim of this study was to determine the degree of compliance and frequency of nursing diagnoses registered in the pediatric o...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Studies in health technology and informatics
دوره 107 Pt 1 شماره
صفحات -
تاریخ انتشار 2004